Bài viết này của Monkey sẽ chia sẻ chi tiết các kiến thức từ cơ bản đến nâng cao của hàm số lượng giác và phương trình lượng giác trong toán học. Việc này sẽ giúp bạn dễ dàng tổng hợp, cũng như ghi nhớ tốt hơn các kiến thức đã học trên trường lớp.
Hàm số lượng giác là gì?
Hàm số lượng giác là những hàm toán học mô tả mối quan hệ giữa các góc và các cạnh của tam giác vuông, đồng thời cũng dùng để mô tả các hiện tượng tuần hoàn trong nhiều lĩnh vực như vật lý, kỹ thuật và sóng.
Các hàm số lượng giác cơ bản gồm:
-
Sin (sinx) – Tỷ số giữa cạnh đối và cạnh huyền.
-
Cos (cosx) – Tỷ số giữa cạnh kề và cạnh huyền.
-
Tan (tanx) – Tỷ số giữa cạnh đối và cạnh kề (tanx = sinx / cosx).
-
Cot (cotx) – Tỷ số giữa cạnh kề và cạnh đối (cotx = 1 / tanx).
-
Sec (secx) – Tỷ số giữa cạnh huyền và cạnh kề (secx = 1 / cosx).
-
Cosec hay csc (cscx) – Tỷ số giữa cạnh huyền và cạnh đối (cscx = 1 / sinx).
Đặc điểm chung của các hàm số này là:
-
Các hàm số này có tính chu kỳ (lặp lại sau một khoảng thời gian nhất định).
-
Có miền xác định, tập giá trị, và các điểm không xác định (ví dụ: tanx không xác định tại x = π/2 + kπ).
-
Có đồ thị riêng biệt, mang hình dạng sóng tuần hoàn.
Các công thức hàm số lượng giác đầy đủ nhất
Sau đây là các công thức hàm số lượng giác mà bạn thường gặp phải trong các kì thi, đặc biệt là kì thi THPT Quốc Gia.
Công thức hàm số lượng giác cơ bản
Công thức cộng trong hàm số lượng giác
Mẹo dùng để nhớ nhanh các công thức cộng trong hàm số là câu nói “Sin thì sin cos cos sin, cos thì cos cos sin sin dấu trừ. Tan thì tan nọ tan kia chia cho mẫu số 1 trừ tan tan.”
Công thức các cung liên quan trên đường tròn lượng giác
Hai góc đối nhau:
-
cos (-x) = cos x
-
sin (-x) = -sin x
-
tan (-x) = -tan x
-
cot (-x) = -cot x
Hai góc bù nhau:
-
sin (π - x) = sin x
-
cos (π - x) = -cos x
-
tan (π - x) = -tan x
-
cot (π - x) = -cot x
Hai góc phụ nhau:
-
sin (π/2 - x) = cos x
-
cos (π/2 - x) = sin x
-
tan (π/2 - x) = cot x
-
cot (π/2 - x) = tan x
Hai góc hơn kém π:
-
sin (π + x) = -sin x
-
cos (π + x) = -cos x
-
tan (π + x) = tan x
-
cot (π + x) = cot x
Hai góc hơn kém π/2:
-
sin (π/2 + x) = cos x
-
cos (π/2 + x) = -sin x
-
tan (π/2 + x) = -cot x
-
cot (π/2 + x) = -tan x
Mẹo nhớ nhanh công thức như sau: “Cos đối, sin bù, phụ chéo, tan hơn kém π.”
Công thức nhân
ĐỪNG BỎ LỠ!! Chương trình học Toán bằng tiếng Anh, giúp phát triển tư duy một cách toàn diện nhất. Nhận ưu đãi lên đến 40% NGAY TẠI ĐÂY!![]() |
Công thức hạ bậc trong hàm số lượng giác
Công thức biến tổng thành tích
Mẹo giúp dễ dàng ghi nhớ công thức hơn: “Cos cộng cos bằng 2 cos cos, cos trừ cos bằng trừ 2 sin sin; sin cộng sin bằng 2 sin cos, sin trừ sin bằng 2 cos sin.”
Công thức biến tích thành tổng
Nghiệm của phương trình lượng giác
Phương trình lượng giác cơ bản:
Phương trình lượng giác trong trường hợp đặc biệt:
-
sin a = 0 ⇔ a = kπ; (k ∈ Z)
-
sin a = 1 ⇔ a = π/2 + k2π; (k ∈ Z)
-
sin a = -1 ⇔ a = -π/2 + k2π; (k ∈ Z)
-
cos a = 0 ⇔ a = π/2 + kπ; (k ∈ Z)
-
cos a = 1 ⇔ a = k2π; (k ∈ Z)
-
cos a = -1 ⇔ a = π + k2π; (k ∈ Z)
Xem thêm: Khái niệm và công thức của số hữu tỉ, sự khác biệt giữa số hữu tỉ và số vô tỉ là gì?
Công thức hàm số lượng giác và phương trình lượng giác cơ bản và đặc biệt
Phương trình hàm lượng giác cơ bản sin x = sin α, sin x = a
Hàm số lượng giác phương trình lượng giác các trường hợp đặc biệt:
Phương trình cos x = cos α, cos x = a
Các trường hợp đặc biệt:
Phương trình tan x = tan α, tan x = a
Các trường hợp đặc biệt:
Phương trình cot x = cot α, cot x = a
Các trường hợp đặc biệt:
Phương trình bậc nhất đối với một hàm số lượng giác
Có dạng at + b = 0 với a, b ∈ Ζ, a ≠ 0,với t là một hàm số lượng giác nào đó. Công thức giải như sau:
Đạo hàm hàm số lượng giác cơ bản
Đạo hàm của các hàm lượng giác là phương pháp toán học tìm tốc độ biến thiên của một hàm số lượng giác theo sự biến thiên của biến số. Các hàm số lượng giác thường gặp là sin(x), cos(x) và tan(x).

Tổng hợp tất cả các kiến thức về hàm số bậc nhất và dạng bài tập thường gặp

Hàm số đồng biến trên r khi nào? Và các dạng bài tập ứng dụng từ cơ bản đến nâng cao

Lý thuyết về hàm số đồng biến và các dạng bài tập vận dụng thường gặp
Cách tính giới hạn hàm số lượng giác hay nhất
Áp dụng giới hạn đặc biệt:
Các bước tìm giới hạn hàm số lượng giác của với f(x) là hàm số lượng giác
Bước 1: Sử dụng các công thức lượng giác cơ bản, công thức nhân đôi, công thức cộng, công thức biến đổi,… để biến đổi hàm số lượng giác f(x) về cùng dạng giới hạn đặc biệt nêu trên.
Bước 2: Áp dụng các định lý về giới hạn để tìm giới hạn đã cho.
Cách tính chu kỳ hàm số lượng giác dễ hiểu nhất
Hàm số y= f(x) xác định trên tập hợp D được gọi là hàm số tuần hoàn nếu có số T ≠ 0 sao cho với mọi x ∈ D ta có x+T ∈ D;x-T ∈ D và f(x+T)=f(x). Nếu có số T dương nhỏ nhất thỏa mãn các điều kiện trên thì hàm số đó được gọi là một hàm số tuần hoàn với chu kì T.
Cách tìm chu kì của hàm số lượng giác (nếu có):
-
Hàm số y = k.sin(ax+b) có chu kì là T= 2π/|a|
-
Hàm số y= k.cos(ax+ b) có chu kì là T= 2π/|a|
-
Hàm số y= k.tan( ax+ b) có chu kì là T= π/|a|
-
Hàm số y= k.cot (ax+ b ) có chu kì là: T= π/|a|
-
Hàm số y= f(x) có chu kì T1; hàm số T2 có chu kì T2 thì chu kì của hàm số y= a.f(x)+ b.g(x) là T = bội chung nhỏ nhất của T1 và T2
Bài tập mẫu:
Trong các hàm số sau đây, hàm số nào là hàm số tuần hoàn?
A. y= sinx- x
B. y= cosx
C. y= x.sin x
D. y=(x2+1)/x
Đáp án: Chọn B
Tập xác định của hàm số: D=R .
mọi x ∈ D , k ∈ Z ta có x-2kπ ∈ D và x+2kπ ∈ D,cos(x+2kπ)=cosx .
Vậy y= cosx là hàm số tuần hoàn.
Một số bài tập tự luyện về hàm số lượng giác
Trên đây là tất cả các thông tin về hàm số lượng giác mà bạn cần ghi nhớ. Hy vọng, với những chia sẻ thực tế trên đây của Monkey, sẽ giúp bạn dễ dàng chinh phục các đề thi sắp tới. Xin được đồng hành cùng bạn.
ĐỪNG BỎ LỠ!! Chương trình học Toán bằng tiếng Anh, giúp phát triển tư duy một cách toàn diện nhất. Nhận ưu đãi lên đến 40% NGAY TẠI ĐÂY!![]() |