Nguyên hàm lượng giác là một trong những kiến thức toán học cơ bản, quan trọng trong chương trình THPT. Để giúp các em hiểu rõ hơn về công thức nguyên hàm lượng giác, các dạng bài thường gặp... hãy cùng Monkey tìm hiểu rõ hơn ngay trong bài viết sau đây nhé.
- Lộ trình Tiếng Anh toàn diện cho trẻ 0-11 tuổi chuẩn đầu ra Cambridge
- Áp dụng các phương pháp giáo dục được kiểm chứng trên thế giới
- Công nghệ M-Speak độc quyền chấm điểm và nhận xét phát âm chuẩn tới từng âm vị
- Kho học liệu khổng lồ với 4000+ hoạt động tương tác
- Hệ thống lớp học, giáo viên đồng hành cùng ba mẹ và bé
- Luyện đọc với kho 1000+ truyện tranh tương tác
- Rèn luyện kỹ năng Đọc - Hiểu thông qua trò chơi và câu hỏi tương tác
- Lộ trình học 14 cấp độ giúp dễ dàng nhận thấy sự tiến bộ của trẻ
- Công nghệ trí tuệ nhân tạo M-Speak chấm điểm và nhận xét phát âm khi bé kể chuyện
- 4 cấp độ học từ dễ đến nâng cao phù hợp với nhiều lứa tuổi & trình độ của trẻ
- Hệ thống bài học đồ sộ và bài bản giúp trẻ tự tin tiếp cận kiến thức mới
- Sách bài tập bổ trợ Monkey Math Workbook hỗ trợ đắc lực trong việc nâng cao năng lực toán học cho trẻ
- Hơn 60 chủ đề thuộc 7 chuyên đề toán học lớn giúp trẻ dễ dàng nắm bắt các khái niệm toán học
- Phát triển đồng bộ tư duy & ngôn ngữ giúp con học giỏi cả toán và tiếng Anh
- Áp dụng phương pháp học tập hiện đại qua trò chơi, hình ảnh, âm thanh
- Học vần chuẩn và nhanh nhất theo chương trình học vần theo sách giáo khoa mới
- Trẻ có thể đọc trôi chảy trước khi vào lớp 1 nhờ 700+ truyện tranh tương tác, 300+ sách nói
- Tăng khả năng Đọc - Hiểu với 1500+ câu hỏi tương tác sau truyện
- Phát triển trí tuệ cảm xúc (EQ) và nuôi dưỡng tâm hồn của trẻ nhờ 1000+ truyện cổ tích dân gian, thơ, bài học cuộc sống chọn lọc
- Hệ thống bài học đồ sộ, bài bản
- Trẻ tự tin tiếp thu kiến thức mới trên lớp
- Cấp độ học từ Dễ đến Nâng cao phù hợp với trình độ và nhận thức của trẻ
Nguyên hàm lượng giác là gì?
Nguyên hàm lượng giác được biết đến là phần kiến thức toán quan trọng trong chương trình toán THPT. Chính vì vậy, để có thể giải được các bài tập liên quan, đòi hỏi học sinh phải nắm vững lý thuyết của chúng. Cụ thể:
Định nghĩa
Nguyên hàm lượng giác là sự kết hợp giữa nguyên hàm và hàm lượng giác. Trong đó:
Theo Wiki, hàm lượng giác được biết đến là những hàm số toán học của góc, chúng thường được dùng khi nghiên cứu các hiện tượng có tính chất tuần hoàn hay tam giác. Các hàm lượng giác của một góc thường được định nghĩa bởi tỷ lệ chiều dài hai cạnh của tam giác vuông chứa góc đó, hoặc tỷ lệ chiều dài giữa các đoạn thẳng nối các điểm đặc biệt trên vòng tròn đơn vị.
Với những định nghĩa hiện đại hơn thường coi các hàm lượng giác là chuỗi số vô hạn hoặc là nghiệm của một số phương trình vi phân, điều này cho phép hàm lượng giác có thể có đối số là một số thực hay một số phức bất kì.
Trong đó sẽ bao gồm những hàm lượng giác cơ bản như:
Còn nguyên hàm được định nghĩa là: Cho hàm số f(x) xác định trên K (K là khoảng, đoạn hay nửa khoảng). Hàm số F(x) được gọi là nguyên hàm của hàm số f(x) trên K nếu F'(x) = f(x) với mọi x ∈ K.
Kí hiệu: ∫ f(x)dx = F(x) + C.
Định lý liên quan
Nguyên hàm lượng giác cũng là một dạng toán của nguyên hàm, nên khi giải bài tập học sinh phải nắm rõ những định lý cơ bản của nguyên hàm để giải được bài tập. Cụ thể:
- Nếu F(x) là một nguyên hàm của f(x) trên K thì với mỗi hằng số C, hàm số G(x) = F(x) + C cũng là một nguyên hàm của f(x) trên K.
- Nếu F(x) là một nguyên hàm của hàm số f(x) trên K thì mọi nguyên hàm của f(x) trên K đều có dạng F(x) + C, với C là một hằng số.
Do đó F(x) + C; C ∈ R là họ tất cả các nguyên hàm của f(x) trên K.
Tính chất của nguyên hàm
- (∫ f(x)dx)’ = f(x) và ∫ f'(x)dx = f(x) + C.
- Nếu F(x) có đạo hàm thì: ∫d(F(x)) = F(x) + C).
- ∫ kf(x)dx = k∫ f(x)dx với k là hằng số khác 0.
- ∫[f(x) ± g(x)]dx = ∫ f(x)dx ± ∫g(x)dx.
Sự tồn tại của nguyên hàm
Đối với dạng toán nguyên hàm lượng giác, cũng sẽ dựa theo định lý sự tồn tại của nguyên hàm như sau:
Mọi hàm số f(x) liên tục trên K đều có nguyên hàm trên K.
Công thức nguyên hàm lượng giác chi tiết nhất
Sau khi đã nắm được định nghĩa, tính chất của một bài toán nguyên hàm hàm lượng giác. Để có thể tiến hành làm bài tập và giải chúng thì việc ghi nhớ công thức rất quan trọng.
Hiện tại đối với công thức nguyên hàm lượng giác sẽ có 3 dạng từ cơ bản, mở rộng và nâng cao. Cụ thể như sau:
Các dạng bài tập về nguyên hàm lượng giác thường gặp và cách giải
Dựa vào công thức nguyên hàm lượng giác trên, về cơ bản sẽ có có 4 dạng toán liên quan để các em học sinh có thể áp dụng để giải bài tập đơn giản. Cụ thể:
Bài tập toán nguyên hàm của hàm lượng giác tự luyện
Vì dạng toán này thường gặp nhiều trong quá trình làm bài tập, bài thi học kỳ cho đến kỳ thi THPT quốc gia, nên các em cần phải nắm rõ từ lý thuyết về công thức sau đó rèn luyện thực hành để có thể làm quen, hiểu và giải quyết bài toán chính xác nhất.
Vậy nên, để giúp học sinh thực hành giải bài tập toán nguyên hàm lượng giác, sau đây là một số bài tập toán tự liên để các em có thể tham khảo và áp dụng:
Xem thêm: Tất tần tật kiến thức nguyên hàm Inx kèm theo hướng dẫn giải bài tập nguyên hàm của In x chi tiết
Kết luận
Trên đây là tổng hợp những kiến thức về dạng toán nguyên hàm lượng giác. Về cơ bản đây là một bài toán khá khó nếu như học sinh không nắm vững kiến thức từ lý thuyết cho đến thực hành sẽ rất dễ bị mất điểm ở dạng bài tập này.
Vậy nên, hy vọng với những chia sẻ của Monkey trên sẽ giúp các em có thêm dữ liệu, kiến thức để chinh phục toán nguyên hàm dễ dàng, hiệu quả hơn nhé.